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INTERFEROMETRIC MEASUREMENT OF SMALL REFRACTION ANGLES

By utilizing the fringe slopes in complementary interferograms

(discussed later), one can measure small angles of refraction for rays

passing through a medium with transverse refractive index gradients.

This technique is useful as a plasma diagnostic. The refraction angles

for a plasma yield general information about perpendicular gradients and

mass distribution. Small refraction angles through a low density region

may represent significant mass due to the large volume involved. For the

special case of a cylindrical plasma, it has been shown that the electron

1 2
density can be determined from refraction measurements. ' The technique

described in this letter allows the separate measurements of both the

radial and axial refraction angles, and thus extends the technique of

Ref. (1) to the more general case of a plasma with azimuthal symmetry.

The emphasis in this technique is on using fringe slopes to obtain refrac-

tion angles. S:,all fringe slopes can be measured accurately and unambiguously

whereas relatively more error is involved in interpolating or extrapolating

small fringe spacing.

Consider a medium which is symmetric about the z-axis so that the re-

fractive index n is a function of z and the radial distance : from the

z-axis. A laser beam passing through the medium perpendicular to the z-axis

is combined with a reference beam at a small wavefront angle K = '/d where J r
w

is the background fringe spacing and k is wavelength. The wavefront inter-

section is taken, for simplicity, to be perpendicular to the z-axis. The
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resulting interferogram has fringes which are projected into the image

of a plane which passes through the z-axis and is perpendicular to the

laser beam. In this plane, each fringe is an equiphase curve which is a

function of z and the projected radial distance (ray impact parameter)

of the ray from the z-axis. The phase for a ray along a path s = r2

can then be expressed as

6(r,z) = + + n (z,p.,s)ds (1)d A

where, in the first term, two signs are allowed for the wavefront angle.

The two interferograms described by Eq. (1) are complementary in that one

can be obtained from the other by an inversion of the wavefront angle.

This is done physically by interchanging the reference and probing beams

or by reflecting both beams from a mirror.

As a concrete example of the technique, consider the interferograms

formed by passing a probing laser beam through a medium (laser produced plasma)

small compared to the cross-section of the beam and then letting the beam

impinge at 45 degrees incidence onto a wedged shearing plate. 3  In our

experiment, this was a 5 cm diameter by 1 cm thick plate of fused quartz

with a 6 minute wedge. The front and back reflections interfere and the

wedge and beam collimation produce a background fringe pattern. Due to

the I cm plate thickness, the phase-disturbed region of the beam for one

surface reflection falls on the undisturbed region of the beam from the other

surface reflection which serves as a reference beam. The shearing plate

thus acts as a folding-wave-front shearing interferometer and allows

the simultaneous recording of the complementary interferograms. Such inter-

ferograms are shown in Fig. I with a 200 micron reference marker given near

the bottom. The axis of symmetry (z-axis) is horizontal along the bottom
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of the Figure. The five fringes coming in from the top from a large radial dis-

tance are seen to curve away from the plasma in the left-hand interferogram

while they cu?,ve into the plasma in the complementary interferogram shown on

the right. This behavior is now examined more quantitatively.

The fringes define a set of curves in the p - z plane (P = p

z = z(t)) each having a constant phase. The phase change along a fringe

(D/Pp ) dp + (aW/az) dz, thus vanishes. This shows that the fringe slope

z' =dz/dr can be expressed as -(/alr)/(aH/az). Using Eq. (1) then gives

B

z0 r (2)0 +0
Z- w

where or f (a h_)ds and 0 =I (a /az) ds are the refraction angles

for gradients along the P and z axes, respectively, and ew is the magnitude

of the wavefront angle. When the two complementary interferograms are

simultaneously recorded, then, at each PL, z position, Eqs. (2) give the

slope z ' (+ew ) as well as the slope z2 ' (-6w). These two equations give,

2zI' z2' z I I + z2 '

Z 2 W 1 2 W

The method is illustrated at a location (near the middles in Fig. I)

where the fringe slopes in the complementary interferograms are considerably

different. The fringe slope at the indicated point on the left-hand inter-

ferogram is z, ' = -1.28 while it is z2' = +1.57 at the corresponding location

in the right-hand interferogram. From the background fringe spacing d (175

microns) and probe wavelength (0.527 microns) the wavefront angle 0 isw

X/d = 3.0 mrad. Using these results in Eqs. (3) gives the refraction angles

as 0 = 4.2 mrad and 0 = 0.31 mrad. The density gradient at this locationr z

is seen to be primarily in the radial direction.
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One should avoid applying Eqs. (3) at locations where zlI z2
1
'  This

occurs in regions (near the lower-right corners in Fig. 1) where the index

gradients are so large that the fringe slopes are nearly equal, (9 << , 8

in the complementary interferograms. One can, even at these locations,

determine 9r/6 z directly from Eq. (2) by ignoring w . One could apply

Eqs. (3) to larger index gradient regions by using larger wavefront angles.

However, it is better in the region of steep index gradients to determine

9 r a, directly from fringe spacing. From Eq. (1), one finds ;6/3o = 21e r/

and 36/iz = 27 (ez : w)/x. Thus, 9r is approximately X/Ap where Ao is

the radial (vertical in Fig. 1) distance between successive bright (or dark)

fringes at the given location. As a check, note that Apxis about 120 microns

at the location indicated. This gives 9 (4.2 mrad) in agreement with ther

value determined by Eqs. (3).

A rough, worst case (no imaging) interferometric limitation on the

size of the refraction angle 9 for a path D in a medium is obtained by

requiring that the difference in the actual and projected path (D cos 3)

be small compared to a probe wavelength '. Thus, (for small 9) / D".

For the example given in Fig. 1, the target was 600 microns in diameter.

Thus, taking A.5 microns and D-103 microns shows 9 should be less than

about 30 mrad. More exact numerical studies 4'5 show that, with proper

imaging, accurate interferometric results can be obtained even with much

larger refraction angles.

This work was supported by the U.S. Department of Energy.
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